DeepVO: Towards end-to-end visual odometry with deep recurrent convolutional neural networks S Wang, R Clark, H Wen, N Trigoni Robotics and Automation (ICRA), 2017 IEEE International Conference on, 2043-2050, 2017 | 1016 | 2017 |
End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks S Wang, R Clark, H Wen, N Trigoni The International Journal of Robotics Research 37 (4-5), 513-542, 2018 | 779* | 2018 |
VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem. R Clark, S Wang, H Wen, A Markham, N Trigoni AAAI, 3995-4001, 2017 | 436 | 2017 |
CodeSLAM-Learning a Compact, Optimisable Representation for Dense Visual SLAM M Bloesch, J Czarnowski, R Clark, S Leutenegger, AJ Davison IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 | 422 | 2018 |
Learning object bounding boxes for 3d instance segmentation on point clouds B Yang, J Wang, R Clark, Q Hu, S Wang, A Markham, N Trigoni Advances in neural information processing systems 32, 2019 | 354 | 2019 |
Vidloc: A deep spatio-temporal model for 6-dof video-clip relocalization R Clark, S Wang, A Markham, N Trigoni, H Wen IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6856-6864, 2017 | 333 | 2017 |
Fusion++: Volumetric object-level slam J McCormac, R Clark, M Bloesch, A Davison, S Leutenegger 2018 international conference on 3D vision (3DV), 32-41, 2018 | 324 | 2018 |
Anomaly detection for time series using vae-lstm hybrid model S Lin, R Clark, R Birke, S Schönborn, N Trigoni, S Roberts ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020 | 251 | 2020 |
Interiornet: Mega-scale multi-sensor photo-realistic indoor scenes dataset W Li, S Saeedi, J McCormac, R Clark, D Tzoumanikas, Q Ye, Y Huang, ... arXiv preprint arXiv:1809.00716, 2018 | 237 | 2018 |
3D object reconstruction from a single depth view with adversarial learning B Yang, H Wen, S Wang, R Clark, A Markham, N Trigoni arXiv preprint arXiv:1708.07969, 2017 | 216 | 2017 |
Dense 3D object reconstruction from a single depth view B Yang, S Rosa, A Markham, N Trigoni, H Wen IEEE transactions on pattern analysis and machine intelligence 41 (12), 2820 …, 2018 | 173 | 2018 |
Deepfactors: Real-time probabilistic dense monocular slam J Czarnowski, T Laidlow, R Clark, AJ Davison IEEE Robotics and Automation Letters 5 (2), 721-728, 2020 | 166 | 2020 |
Learning to Solve Nonlinear Least Squares for Monocular Stereo R Clark, M Bloesch, J Czarnowski, A Davison, S Leutenegger Proceedings of the European Conference on Computer Vision (ECCV), 284-299, 2018 | 95 | 2018 |
Uncovering latent style factors for expressive speech synthesis Y Wang, RJ Skerry-Ryan, Y Xiao, D Stanton, J Shor, E Battenberg, ... arXiv preprint arXiv:1711.00520, 2017 | 88 | 2017 |
Terminerf: Ray termination prediction for efficient neural rendering M Piala, R Clark 2021 International Conference on 3D Vision (3DV), 1106-1114, 2021 | 74 | 2021 |
Keyframe based large-scale indoor localisation using geomagnetic field and motion pattern S Wang, H Wen, R Clark, N Trigoni Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International …, 2016 | 63 | 2016 |
Pointloc: Deep pose regressor for lidar point cloud localization W Wang, B Wang, P Zhao, C Chen, R Clark, B Yang, A Markham, ... IEEE Sensors Journal 22 (1), 959-968, 2021 | 50 | 2021 |
Improving the Prosody of RNN-Based English Text-To-Speech Synthesis by Incorporating a BERT Model. T Kenter, M Sharma, R Clark INTERSPEECH 2020, 4412-4416, 2020 | 43 | 2020 |
Scalable uncertainty for computer vision with functional variational inference EDC Carvalho, R Clark, A Nicastro, PHJ Kelly Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 24 | 2020 |
Learning meshes for dense visual SLAM M Bloesch, T Laidlow, R Clark, S Leutenegger, AJ Davison Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019 | 24 | 2019 |