Almost sure well-posedness of the cubic nonlinear Schrödinger equation below J Colliander, T Oh | 185 | 2012 |
On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ^d, d≥ 3 Á Bényi, T Oh, O Pocovnicu Transactions of the American Mathematical Society, Series B 2 (1), 1-50, 2015 | 140 | 2015 |
Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS A Nahmod, T Oh, L Rey-Bellet, G Staffilani Journal of the European Mathematical Society, 2012 | 135 | 2012 |
Renormalization of the two-dimensional stochastic nonlinear wave equations M Gubinelli, H Koch, T Oh Transactions of the American Mathematical Society 370 (10), 7335-7359, 2018 | 116 | 2018 |
The Sobolev inequality on the torus revisited Á Bényi, T Oh Publicationes Mathematicae Debrecen 83 (3), 359, 2013 | 109 | 2013 |
Solitons and Scattering for the Cubic–Quintic Nonlinear Schrödinger Equation on R Killip, T Oh, O Pocovnicu, M Vişan Archive for Rational Mechanics and Analysis 225, 469-548, 2017 | 106 | 2017 |
Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R3 T Oh, O Pocovnicu Journal de Mathématiques Pures et Appliquées 105 (3), 342-366, 2016 | 96 | 2016 |
Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS Á Bényi, T Oh, O Pocovnicu Excursions in Harmonic Analysis, Volume 4: The February Fourier Talks at the …, 2015 | 92 | 2015 |
Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation T Oh, N Tzvetkov Probability theory and related fields 169, 1121-1168, 2017 | 83 | 2017 |
Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS Z Guo, S Kwon, T Oh Communications in Mathematical Physics 322, 19-48, 2013 | 77 | 2013 |
Invariant Gibbs measures and as global well posedness for coupled KdV systems T Oh | 75 | 2009 |
A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing nonlinear Schrödinger equations T Oh, L Thomann Stochastics and Partial Differential Equations: Analysis and Computations 6 …, 2018 | 74 | 2018 |
A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces T Oh Funkcialaj Ekvacioj 60 (2), 259-277, 2017 | 73 | 2017 |
Non-Existence of Solutions for the Periodic Cubic NLS below Z Guo, T Oh International Mathematics Research Notices 2018 (6), 1656-1729, 2018 | 72 | 2018 |
Best constants for certain multilinear integral operators Á Bényi, CT Oh Journal of Inequalities and Applications 2006, 1-12, 2006 | 67 | 2006 |
Global dynamics for the two-dimensional stochastic nonlinear wave equations M Gubinelli, H Koch, T Oh, L Tolomeo International Mathematics Research Notices 2022 (21), 16954-16999, 2022 | 63 | 2022 |
Invariance of the Gibbs measure for the Schrödinger–Benjamin–Ono system T Oh SIAM journal on mathematical analysis 41 (6), 2207-2225, 2010 | 63 | 2010 |
Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity M Gubinelli, H Koch, T Oh arXiv preprint arXiv:1811.07808, 2018 | 62 | 2018 |
Modulation spaces, Wiener amalgam spaces, and Brownian motions Á Bényi, T Oh Advances in Mathematics 228 (5), 2943-2981, 2011 | 62 | 2011 |
On unconditional well-posedness of modified KdV S Kwon, T Oh International Mathematics Research Notices 2012 (15), 3509-3534, 2012 | 61 | 2012 |