Seguir
Yanan Li
Título
Citado por
Citado por
Año
Teleoperation control based on combination of wave variable and neural networks
C Yang, X Wang, Z Li, Y Li, CY Su
IEEE Transactions on Systems, Man, and Cybernetics: Systems 47 (8), 2125-2136, 2016
3352016
Human--Robot Collaboration Based on Motion Intention Estimation
Y Li, SS Ge
Mechatronics, IEEE/ASME Transactions on 19 (3), 1007 - 1014, 2014
3242014
Neural network control of a rehabilitation robot by state and output feedback
W He, SS Ge, Y Li, E Chew, YS Ng
Journal of Intelligent & Robotic Systems 80 (1), 15-31, 2015
2542015
Continuous role adaptation for human–robot shared control
Y Li, KP Tee, WL Chan, R Yan, Y Chua, DK Limbu
IEEE Transactions on Robotics 31 (3), 672-681, 2015
2002015
Neural networks enhanced adaptive admittance control of optimized robot–environment interaction
C Yang, G Peng, Y Li, R Cui, L Cheng, Z Li
IEEE transactions on cybernetics 49 (7), 2568-2579, 2018
1842018
Haptic identification by ELM-controlled uncertain manipulator
C Yang, K Huang, H Cheng, Y Li, CY Su
IEEE Transactions on Systems, Man, and Cybernetics: Systems 47 (8), 2398-2409, 2017
1672017
Impedance Learning for Robots Interacting With Unknown Environments
Y Li, SS Ge
Control Systems Technology, IEEE Transactions on 22 (4), 1422 - 1432, 2014
1502014
Human-robot co-carrying using visual and force sensing
X Yu, W He, Q Li, Y Li, B Li
IEEE Transactions on Industrial Electronics 68 (9), 8657-8666, 2020
1492020
Force, impedance, and trajectory learning for contact tooling and haptic identification
Y Li, G Ganesh, N Jarrassé, S Haddadin, A Albu-Schaeffer, E Burdet
IEEE Transactions on Robotics 34 (5), 1170-1182, 2018
1472018
A teleoperation framework for mobile robots based on shared control
J Luo, Z Lin, Y Li, C Yang
IEEE robotics and automation letters 5 (2), 377-384, 2019
1342019
A framework of human–robot coordination based on game theory and policy iteration
Y Li, KP Tee, R Yan, WL Chan, Y Wu
IEEE Transactions on Robotics 32 (6), 1408-1418, 2016
1342016
Differential game theory for versatile physical human–robot interaction
Y Li, G Carboni, F Gonzalez, D Campolo, E Burdet
Nature Machine Intelligence 1 (1), 36-43, 2019
1222019
Bayesian estimation of human impedance and motion intention for human–robot collaboration
X Yu, W He, Y Li, C Xue, J Li, J Zou, C Yang
IEEE transactions on cybernetics 51 (4), 1822-1834, 2019
1152019
Learning impedance control for physical robot–environment interaction
Y Li, S Sam Ge, C Yang
International Journal of Control 85 (2), 182-193, 2012
1072012
Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions
Y Li, C Yang, SS Ge, TH Lee
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 41 …, 2010
932010
A brief review of neural networks based learning and control and their applications for robots
Y Jiang, C Yang, J Na, G Li, Y Li, J Zhong
Complexity 2017 (1), 1895897, 2017
872017
Simultaneously encoding movement and sEMG-based stiffness for robotic skill learning
C Zeng, C Yang, H Cheng, Y Li, SL Dai
IEEE Transactions on Industrial Informatics 17 (2), 1244-1252, 2020
852020
Automatic obstacle avoidance of quadrotor UAV via CNN-based learning
X Dai, Y Mao, T Huang, N Qin, D Huang, Y Li
Neurocomputing 402, 346-358, 2020
832020
Impedance adaptation for optimal robot–environment interaction
SS Ge, Y Li, C Wang
International Journal of Control 87 (2), 249-263, 2014
832014
Current-cycle iterative learning control for high-precision position tracking of piezoelectric actuator system via active disturbance rejection control for hysteresis compensation
D Huang, D Min, Y Jian, Y Li
IEEE Transactions on Industrial Electronics 67 (10), 8680-8690, 2019
742019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20