Man-Kit Sit
Man-Kit Sit
Dirección de correo verificada de - Página principal
Citado por
Citado por
Towards efficient deep neural network training by FPGA-based batch-level parallelism
C Luo, MK Sit, H Fan, S Liu, W Luk, C Guo
Journal of Semiconductors 41 (2), 022403, 2020
Ekko: A {Large-Scale} Deep Learning Recommender System with {Low-Latency} Model Update
C Sima, Y Fu, MK Sit, L Guo, X Gong, F Lin, J Wu, Y Li, H Rong, PL Aublin, ...
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI …, 2022
FPGA-based accelerator for losslessly quantized convolutional neural networks
MK Sit, R Kazami, H Amano
2017 International Conference on Field Programmable Technology (ICFPT), 295-298, 2017
An experimental framework for improving the performance of bft consensus for future permissioned blockchains
MK Sit, M Bravo, Z István
Proceedings of the 15th ACM International Conference on Distributed and …, 2021
Towards Improving the Performance of BFT Consensus For Future Permissioned Blockchains
M Bravo, Z István, MK Sit
arXiv preprint arXiv:2007.12637, 2020
Quiver: Supporting GPUs for Low-Latency, High-Throughput GNN Serving with Workload Awareness
Z Tan, X Yuan, C He, MK Sit, G Li, X Liu, B Ai, K Zeng, P Pietzuch, L Mai
arXiv preprint arXiv:2305.10863, 2023
GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models
H Wang, MK Sit, C He, Y Wen, W Zhang, J Wang, Y Yang, L Mai
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–7