Folgen
Chansoo Kim
Chansoo Kim
Bestätigte E-Mail-Adresse bei jnu.ac.kr - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Simultaneous localization and map change update for the high definition map-based autonomous driving car
K Jo, C Kim, M Sunwoo
Sensors 18 (9), 3145, 2018
1062018
PCSCNet: Fast 3D semantic segmentation of LiDAR point cloud for autonomous car using point convolution and sparse convolution network
J Park, C Kim, S Kim, K Jo
Expert Systems with Applications 212, 118815, 2023
682023
Multiple exposure images based traffic light recognition
C Jang, C Kim, D Kim, M Lee, M Sunwoo
2014 IEEE intelligent vehicles symposium proceedings, 1313-1318, 2014
582014
Re-plannable automated parking system with a standalone around view monitor for narrow parking lots
C Jang, C Kim, S Lee, S Kim, S Lee, M Sunwoo
IEEE Transactions on Intelligent Transportation Systems 21 (2), 777-790, 2019
562019
Crowd-sourced mapping of new feature layer for high-definition map
C Kim, S Cho, M Sunwoo, K Jo
Sensors 18 (12), 4172, 2018
472018
Design factor optimization of 3D flash lidar sensor based on geometrical model for automated vehicle and advanced driver assistance system applications
CH Jang, CS Kim, KC Jo, M Sunwoo
International journal of automotive technology 18, 147-156, 2017
382017
Updating point cloud layer of high definition (hd) map based on crowd-sourcing of multiple vehicles installed lidar
C Kim, S Cho, M Sunwoo, P Resende, B Bradaï, K Jo
IEEE Access 9, 8028-8046, 2021
352021
Deep learning-based dynamic object classification using LiDAR point cloud augmented by layer-based accumulation for intelligent vehicles
K Kim, C Kim, C Jang, M Sunwoo, K Jo
Expert Systems with Applications 167, 113861, 2021
222021
Robust localization in map changing environments based on hierarchical approach of sliding window optimization and filtering
S Cho, C Kim, M Sunwoo, K Jo
IEEE Transactions on Intelligent Transportation Systems 23 (4), 3783-3789, 2020
202020
Rapid motion segmentation of LiDAR point cloud based on a combination of probabilistic and evidential approaches for intelligent vehicles
K Jo, S Lee, C Kim, M Sunwoo
Sensors 19 (19), 4116, 2019
162019
Semantic point cloud mapping of LiDAR based on probabilistic uncertainty modeling for autonomous driving
S Cho, C Kim, J Park, M Sunwoo, K Jo
Sensors 20 (20), 5900, 2020
152020
Cloud update of tiled evidential occupancy grid maps for the multi-vehicle mapping
K Jo, S Cho, C Kim, P Resende, B Bradai, F Nashashibi, M Sunwoo
Sensors 18 (12), 4119, 2018
152018
Evidence filter of semantic segmented image from around view monitor in automated parking system
C Kim, S Cho, C Jang, M Sunwoo, K Jo
IEEE Access 7, 92791-92804, 2019
142019
Construction process of a three-dimensional roadway geometry map for autonomous driving
K Jo, M Lee, C Kim, M Sunwoo
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of …, 2017
122017
Robust 3-dimension point cloud mapping in dynamic environment using point-wise static probability-based NDT scan-matching
S Lee, C Kim, S Cho, S Myoungho, K Jo
IEEE Access 8, 175563-175575, 2020
112020
A geodetic normal distribution map for long-term LiDAR localization on earth
C Kim, S Cho, M Sunwoo, P Resende, B Bradai, K Jo
IEEE Access 9, 470-484, 2020
72020
Multiple vehicles based new landmark feature mapping for highly autonomous driving map
C Kim, K Jo, B Bradai, M Sunwoo
2017 14th Workshop on Positioning, Navigation and Communications (WPNC), 1-6, 2017
72017
Optimal smoothing based mapping process of road surface marking in urban canyon environment
C Kim, K Jo, S Cho, M Sunwoo
2017 14th Workshop on Positioning, Navigation and Communications (WPNC), 1-6, 2017
52017
Cloud Update of Geodetic Normal Distribution Map Based on Crowd‐Sourcing Detection against Road Environment Changes
C Kim, S Cho, M Sunwoo, P Resende, B Bradaï, K Jo
Journal of Advanced Transportation 2022 (1), 4486177, 2022
32022
A GPU accelerated particle filter based localization using 3D evidential voxel maps
S Cho, C Kim, K Jo, M Sunwoo
SAE Technical Paper, 2019
32019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20