Folgen
Sandesh Kamath
Sandesh Kamath
CVC-UAB, Barcelona
Bestätigte E-Mail-Adresse bei cvc.uab.es
Titel
Zitiert von
Zitiert von
Jahr
Flow of granular matter in a silo with multiple exit orifices: Jamming to mixing
S Kamath, A Kunte, P Doshi, AV Orpe
Physical Review E 90 (6), 062206, 2014
212014
Can we have it all? On the Trade-off between Spatial and Adversarial Robustness of Neural Networks
S Kamath, A Deshpande, S Kambhampati Venkata, ...
Advances in Neural Information Processing Systems 34, 27462-27474, 2021
16*2021
On the robustness of explanations of deep neural network models: A survey
A Jyoti, KB Ganesh, M Gayala, NL Tunuguntla, S Kamath, ...
arXiv preprint arXiv:2211.04780, 2022
52022
How do SGD hyperparameters in natural training affect adversarial robustness?
S Kamath, A Deshpande, KV Subrahmanyam
arXiv preprint arXiv:2006.11604, 2020
32020
On adversarial robustness of small vs large batch training
S Kamath, A Despande, KV Subrahmanyam
22019
Better generalization with adaptive adversarial training
A Despande, S Kamath, KV Subrahmanyam
22019
Resurrecting Old Classes with New Data for Exemplar-Free Continual Learning
D Goswami, A Soutif-Cormerais, Y Liu, S Kamath, B Twardowski, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
12024
Universalization of any adversarial attack using very few test examples
S Kamath, A Deshpande, KV Subrahmanyam, VN Balasubramanian
Proceedings of the 5th Joint International Conference on Data Science …, 2022
12022
Universal adversarial attack using very few test examples
A Deshpande, S Kamath, KV Subrahmanyam
12019
Rethinking Robustness of Model Attributions
S Kamath, S Mittal, A Deshpande, VN Balasubramanian
Proceedings of the AAAI Conference on Artificial Intelligence 38 (3), 2688-2696, 2024
2024
The Expanding Scope of the Stability Gap: Unveiling its Presence in Joint Incremental Learning of Homogeneous Tasks
S Kamath, A Soutif-Cormerais, J Van De Weijer, B Raducanu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
2024
On Universalized Adversarial and Invariant Perturbations
S Kamath, A Deshpande, KV Subrahmanyam
arXiv preprint arXiv:2006.04449, 2020
2020
Universal Attacks on Equivariant Networks
A Deshpande, S Kamath, KV Subrahmanyam
2018
Supplementary Materials: Resurrecting Old Classes with New Data for Exemplar-Free Continual Learning
D Goswami, A Soutif–Cormerais, Y Liu, S Kamath, B Twardowski, ...
Robust attributions require rethinking robustness metrics
S Kamath, A Deshpande, VN Balasubramanian
Better Generalization with Adaptive Adversarial Training
S Kamath, A Deshpande, KV Subrahmanyam
Understanding Adversarial Robustness of Symmetric Networks
S Kamath, A Deshpande
Robustness and Equivariance of Neural Networks
A Deshpande, S Kamath, KV Subrahmanyam
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–18